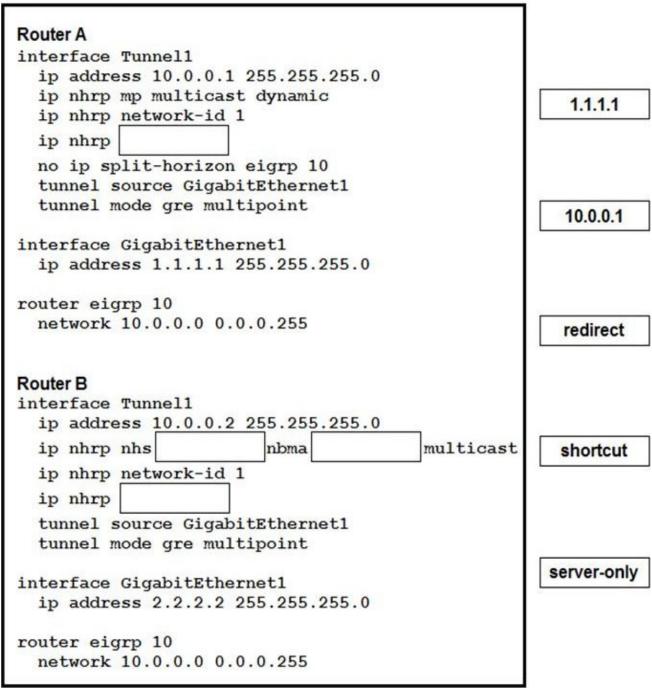


Exam : 300-730

Title: Implementing Secure

Solutions with Virtual


Private Networks (SVPN)

Version: DEMO

1.DRAG DROP

Drag and drop the correct commands from the night onto the blanks within the code on the left to implement a design that allow for dynamic spoke-to-spoke communication. Not all comments are used.

Answer Area

Answer:

Answer Area

```
Router A
interface Tunnell
  ip address 10.0.0.1 255.255.255.0
  ip nhrp mp multicast dynamic
                                                        1.1.1.1
  ip nhrp network-id 1
            redirect
  ip nhrp
  no ip split-horizon eigrp 10
  tunnel source GigabitEthernet1
  tunnel mode gre multipoint
                                                        10.0.0.1
interface GigabitEthernet1
  ip address 1.1.1.1 255.255.255.0
router eigrp 10
  network 10.0.0.0 0.0.0.255
                                                       redirect
Router B
interface Tunnell
  ip address 10.0.0.2 255.255.255.0
  ip nhrp nhs 10.0.0.1
                                 1.1.1.1
                         nbma
                                         multicast
                                                       shortcut
  ip nhrp network-id 1
            shortcut
  ip nhrp
  tunnel source GigabitEthernet1
  tunnel mode gre multipoint
                                                      server-only
interface GigabitEthernet1
  ip address 2.2.2.2 255.255.255.0
router eigrp 10
  network 10.0.0.0 0.0.0.255
```

Explanation:

Reference: https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_dmvpn/configuration/xe-16/sec-conn-dmvpn-xe-16-book/sec-conn-dmvpn-summ-maps.html

2.A second set of traffic selectors is negotiated between two peers using IKEv2.

Which IKEv2 packet will contain details of the exchange?

A. IKEv2 IKE SA INIT

B. IKEv2 INFORMATIONAL

C. IKEv2 CREATE CHILD SA

D. IKEv2 IKE AUTH

Answer: C Explanation:

The IKEv2 CREATE_CHILD_SA packet is used to establish a new security association (SA) between two peers. This packet contains the details of the exchange, including the traffic selectors, the cryptographic algorithms and keys to be used, and any other relevant information

3.Refer to the exhibit.

```
HUB#show ip nhrp

10.0.0.2/32 via 10.0.0.2

Tunnel0 created 00:02:09, expire 00:00:01

Type: dynamic, Flags: unique registered used nhop

NBMA address: 2.2.2.1

10.0.0.3/32 via 10.0.0.3

Tunnel0 created 00:13:25, 01:46:34

Type: dynamic, Flags: unique registered used nhop

NBMA address: 3.3.3.1
```

The DMVPN tunnel is dropping randomly and no tunnel protection is configured.

Which spoke configuration mitigates tunnel drops?

```
A)
interface Tunnel0
ip address 10.0.0.2 255.255.255.0
no ip redirects
ip nhrp map 10.0.0.1 1.1.1.1
ip nhrp map multicast 1.1.1.1
ip nhrp network-id 1
ip nhrp holdtime 20
ip nhrp nhs 10.0.0.1
ip nhrp registration timeout 120
ip nhrp shortcut
tunnel source GigabitEthernet0/1
tunnel mode gre multipoint
end
B)
```

```
interface Tunnel0
 ip address 10.0.0.2 255.255.255.0
 no ip redirects
 ip nhrp map 10.0.0.1 1.1.1.1
 ip nhrp map multicast 1.1.1.1
 ip nhrp network-id 1
 ip nhrp holdtime 120
 ip nhrp nhs 10.0.0.1
 ip nhrp registration timeout 120
 ip nhrp shortcut
 tunnel source GigabitEthernet0/1
 tunnel mode gre multipoint
end
C)
interface Tunnel0
 ip address 10.0.0.2 255.255.255.0
 no ip redirects
 ip nhrp map 10.0.0.1 1.1.1.1
 ip nhrp map multicast 1.1.1.1
 ip nhrp network-id 1
 ip nhrp holdtime 120
 ip nhrp nhs 10.0.0.1
 ip nhrp registration timeout 20
 ip nhrp shortcut
 tunnel source GigabitEthernet0/1
 tunnel mode gre multipoint
end
D)
interface Tunnel0
 ip address 10.0.0.2 255.255.255.0
 no ip redirects
 ip nhrp map 10.0.0.1 1.1.1.1
 ip nhrp map multicast 1.1.1.1
 ip nhrp network-id 1
 ip nhrp holdtime 120
 ip nhrp nhs 10.0.0.1
 ip nhrp registration timeout 150
 ip nhrp shortcut
 tunnel source GigabitEthernet0/1
 tunnel mode gre multipoint
end
```

- A. Option A
- B. Option B
- C. Option C
- D. Option D

Answer: C Explanation:

https://www.globalknowledge.com/us-en/resources/resource-library/articles/understanding-next-hop-resolution-protocol-commands/

4.On a FlexVPN hub-and-spoke topology where spoke-to-spoke tunnels are not allowed, which command is needed for the hub to be able to terminate FlexVPN tunnels?

A. interface virtual-access

- B. ip nhrp redirect
- C. interface tunnel
- D. interface virtual-template

Answer: D Explanation:

On a FlexVPN hub-and-spoke topology where spoke-to-spoke tunnels are not allowed, the command that is needed for the hub to be able to terminate FlexVPN tunnels is interface virtual-template. The interface virtual-template command is used to configure a virtual template interface which provides a secure tunnel for FlexVPN connections. The other commands listed - interface virtual-access, ip nhrp redirect, and interface tunnel - are not related to FlexVPN and are not used to terminate FlexVPN tunnels.

5. Which statement about GETVPN is true?

- A. The configuration that defines which traffic to encrypt originates from the key server.
- B. TEK rekeys can be load-balanced between two key servers operating in COOP.
- C. The pseudotime that is used for replay checking is synchronized via NTP.
- D. Group members must acknowledge all KEK and TEK rekeys, regardless of configuration.

Answer: A Explanation:

KS (key server) is 'caretaker' of the GM group. Group registrations and authentication of GMs is taken care of by KS server. Any GM who wants to join the group is required to be successfully authenticated in the group and sends encryption keys and policy to be used within the group.

https://ipwithease.com/introduction-to-getvpn/